DRIFT CONTROL 2016: A SPRAY ODYSSEY

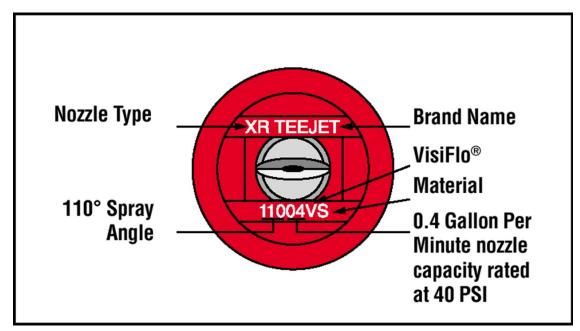
David Brackmann- TeeJet Technologies TPSA -2016

Agenda

- Intro to TeeJet Technologies
- Nozzle evolution
- Nozzle design for drift control
- Ag. Industry involvement/cooperation
 - Working with all in the ag. industry
- The future...
 - New products
- Q & A

Technology and R&D Leader

- Frequently first to market with new technology
 - First modern agricultural nozzle
 - Invented the Quick TeeJet® system
 - Set the standard in VisiFlo® color coding and design
 - Scheme adopted by ISO
 - First remotely operated valves
 - Innovated first ball valve manifold system
 - Patented Turbo TeeJet design for drift reduction



NOZZLE EVOLUTION

Basic Nozzle Nomenclature

Nozzle Evolution

TEEJE?

- Metal body with precision drilled orifice
 - Flat fan pattern
 - Med.- fine droplet sizes
 - Drift not much of a concern

Nozzle Evolution

- Glyphosate days...
 - Drift more of a concern
 - Non-GM off target kill
 - Larger droplets needed
 - Particle
 - Vapor

Nozzle Evolution

- Injection molding
 - Flexibility in design
 - Multiple styles of patterns/tips
 - Combinations of design principals

Nozzles Today...

Turbo TwinJet®

Air Induction 3070

Air Induction Turbo TwinJet®

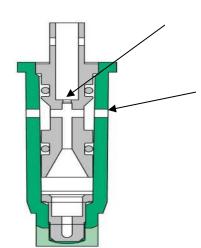
Coarse

Quick Turbo FloodJet®

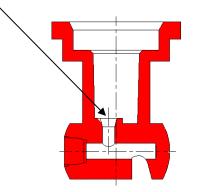
Air Induction

XR

VisiFlo® Color Coding System


VisiFlo Color Coding	Liquid Pressure	Capacity One Nozzle
01	40 PSI (2.8 bar)	0.10 GPM (0.38 l/min)
015	40 PSI (2.8 bar)	0.15 GPM (0.57 l/min)
02	40 PSI (2.8 bar)	0.20 GPM (0.76 l/min)
025	40 PSI (2.8 bar)	0.25 GPM (0.95 l/min)
03	40 PSI (2.8 bar)	0.30 GPM (1.14 l/min)
04	40 PSI (2.8 bar)	0.40 GPM (1.52 l/min)
05	40 PSI (2.8 bar)	0.50 GPM (1.89 l/min)
06	40 PSI (2.8 bar)	0.60 GPM (2.27 l/min)
08	40 PSI (2.8 bar)	0.80 GPM (3.03 l/min)
10	40 PSI (2.8 bar)	1.00 GPM (3.79 l/min)
15	40 PSI (2.8 bar)	1.50 GPM (5.68 l/min)
20	40 PSI (2.8 bar)	2.00 GPM (7.57 l/min)

NOZZLE DESIGN FOR DRIFT CONTROL


Drift Reduction Technology

1. Pre-orifice to create pressure drop

2. Venturi effect to produce airinduced, larger droplets =

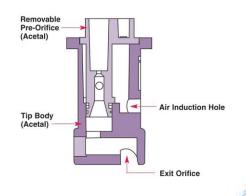
Air Induction Technology

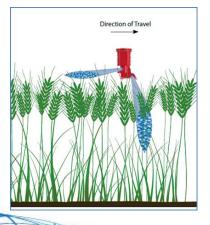
Developing Nozzles for Drift Control

- What are the market needs?
- What spray pattern, droplet size spectrum, sizes, etc?
- Maintaining efficacy
- Testing Testing

Market Needs- New Tip Design

- New Chemical Formulations
 - Potential Issues
 - Chemical Compatibility
- Machinery
 - Bigger, Faster, Stronger
- Responsibility
- Just spray tips?




Nozzle Design Features

- Drop Size
- Air induction
- Pre-Orifice
- Combination
- Spray angle(s)
- Material

Toolot
TECHNOLOGIES

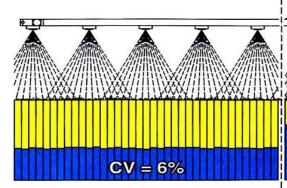
Category	Symbol	Color Code	Approximate Dv0.5 (VDM) (microns)
Extremely Fine	XF	Purple	≈ 50
Very Fine	VF	Red	< 136
Fine	F	Orange	136 – 177
Medium	М	Yellow	177 – 218
Coarse	С	Blue	218 – 349
Very Coarse	VC	Green	349 – 428
Extremely Coarse	XC	White	428 – 622
Ultra Coarse	UC	Black	> 622

Maintaining Efficacy/Quality - Testing

- Drop size testing
 - Standards
 - ASABE S572.1
 - Laser
 - Oxford Laser
 - Visisizer- PDIA (Particle Droplet Image Analysis)
 - TeeJet reference nozzles

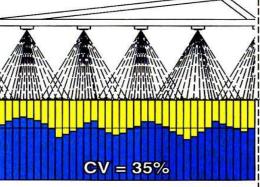
Maintaining Efficacy/Quality - Testing

- Distribution
 - JKI institute

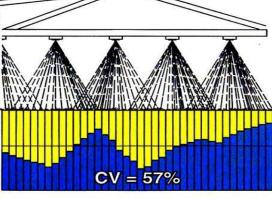


Tip/Nozzle Wear Distribution Test

New Nozzles


Worn Nozzles

Damaged Nozzles


NEW SPRAY TIPS

Produce a uniform distribution when properly overlapped.

WORN SPRAYTIPS

Have a higher output with more spray concentrated under each tip.

DAMAGED SPRAY TIPS

Have a very erratic output – overapplying and underapplying.

Nozzle Selection is Key for Efficacy!!

Coverage Vs. Drift Management

How much coverage can I sacrifice for drift control?

Look at your variables

Product

Plant

Speed

Winds

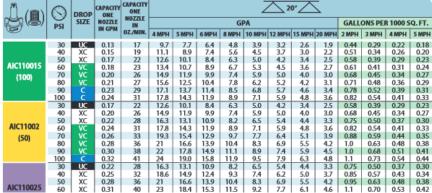
Pressure

Density

		١	HERBICIDES	s	FUNGICIDES		INSECT	ICIDES		
			POST-EM	ERGENCE					DRIFT MANAGE-	PWM NOZZLE
		SOIL APPLIED	CONTACT	SYSTEMIC	CONTACT	SYSTEMIC	CONTACT	SYSTEMIC	MENT	CONTROL
3	Turbo Teefet Reference page 7		VERY GOOD	EXCELLENT						
3	Turbo Teefet at pressures below 30 PSI (2.0 bar) Reference page 7	GOOD	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	VERY GOOD	EXCELLENT
3	Turbo Twinfet ⁺ Reference page 16	GOOD	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	VERY GOOD	EXCELLENT
3	Turbo TwinJet at pressures below 30 PSI (2.0 bar) Reference page 16	VERY GOOD	VERY GOOD	EXCELLENT	VERY GOOD	EXCELLENT	VERY GOOD	EXCELLENT	EXCELLENT	EXCELLENT
II.	Turbo Teefet Induction Reference page 11	EXCELLENT		EXCELLENT		EXCELLENT		EXCELLENT	EXCELLENT	
	Air Induction Turbo TwinJet Reference page 17	VERY GOOD	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	EXCELLENT	
1	AI3070° Reference page 18		VERY GOOD	VERY GOOD	EXCELLENT	VERY GOOD	EXCELLENT	VERY GOOD	EXCELLENT	
	XR , XRC Teefet Reference pages 12–13		EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	GOOD	EXCELLENT
	XR , XRC Teefet at pressures below 30 PSI (2.0 bar) Reference pages 12–13	GOOD	GOOD	VERY GOOD	GOOD	VERY GOOD	GOOD	VERY GOOD	VERY GOOD	EXCELLENT
	AIXR Teefet Reference page 8	VERY GOOD	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	EXCELLENT	

AIC Teelet Air Induction Flat Spray Tips

Typical Applications:


See selection guide on page 4 for recommended typical applications for AIC TeeJet tips.

Features:

- Produces a 110° tapered edge flat spray pattern for uniform coverage in broadcast spraying applications.
- Available with a polymer insert holder with stainless steel (015-15 capacities), ceramic (025-05 capacities) or polymer (02-10 capacities) inserts.
- Larger droplets for less drift.
- Depending on the chemical, produces large air-filled drops through the use of a Venturi air aspirator.
- Al TeeJet nozzle molded into Quick TeeJet® cap provides automatic spray alignment.
- Includes tightly fitting washer that stays put and assures a good seal.
- Recommended pressure rating 30-115 PSI (2-8 bar).

Note: Due to the pre-orifice design, this tip is not compatible with the 4193A check valve tip strainer.

INDUSTRY INVOLVMENT AND COOPERATION

Who, what, when, where, why

Who Does TeeJet Cooperate With???

- Distributors/Dealers
- Equipment Manufacturers
- Universities
 - Profs., Research staff, etc.
- Chemical Companies
- Professional Organizations
- Note: All involvement done globally

What We Do To Cooperate

- Lab/Field Testing
- Sprayer Upgrades
- Dealer Days
- Plot Experiments
- Co-Branding Marketing
- Host/Participate in Trainings

When...

All Year Round

Where???

All over the world

Why Cooperate?

- Educating the market is more important than ever
- Ag. Industry feeds the world's population
- We're proud of what we do
- It's good business

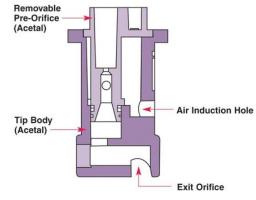
Cooperation with Influential Personnel

Current Issues/Trends

- New Formulations/Seed Traits
 - Potential Concerns for drift
 - Glyphosate/Dicamba Mixes
 - Glyophosate/2,4-D

What Drove This?

- Potential Problems
 - Drift
 - Particle and Vapor
 - Tank Rinsing
 - Non-tolerant varieties
 - Lack of applicator knowledge (and industry)



Enter Drift Reduction Nozzles

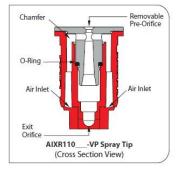
Turbo TeeJet® Induction (TTI)

		PSI										
	15	20	25	30	35	40	50	60	70	80	90	100
TTI110015	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC	XC
TTI11002	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI110025	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI11003	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI11004	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI11005	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI11006	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC

Turbo TeeJet Induction (TTI)

XR Flat Fan Nozzle

AIC and AIXR Nozzles


AIC TeeJet® (AIC)

/ ¥ 1	PSI												
	30	35	40	45	50	55	60	70	80	90	100		
AIC110015	UC	XC	XC	XC	XC	XC	VC	VC	VC	C	С		
AIC11002	UC	UC	XC	XC	XC	XC	VC	VC	VC	VC	U		
AIC110025	UC	UC	XC	XC	XC	XC	XC	VC	VC	VC	U		
AIC11003	UC	UC	XC	XC	XC	XC	XC	VC	VC	VC	C		
AIC11004	UC	UC	XC	XC	XC	XC	XC	VC	VC	VC	U		
AIC11005	UC	UC	XC	XC	XC	XC	XC	VC	VC	VC	VC		
AIC11006	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC	VC		
AIC11008	UC	UC	UC	UC	XC	XC	XC	XC	VC	VC	VC		
AIC11010	UC	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC		
AIC11015	UC	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC		

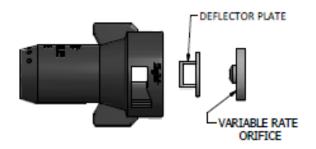
	PSI												
	15	20	25	30	35	40	50	60	70	75	90		
AIXR110015	XC	XC	VC	C	C	C	C	М	М	M	M		
AIXR11002	XC	XC	XC	VC	VC	С	C	C	C	M	M		
AIXR110025	XC	XC	XC	XC	VC	VC	C	C	C	C	С		
AIXR11003	XC	XC	XC	XC	VC	VC	C	С	C	C	С		
AIXR11004	UC	XC	XC	XC	XC	XC	VC	VC	C	C	С		
AIXR11005	UC	XC	XC	XC	XC	XC	VC	VC	C	C	С		
AIXR11006	UC	XC	XC	XC	XC	XC	VC	VC	VC	С	C		

NEW NOZZLE TECH.

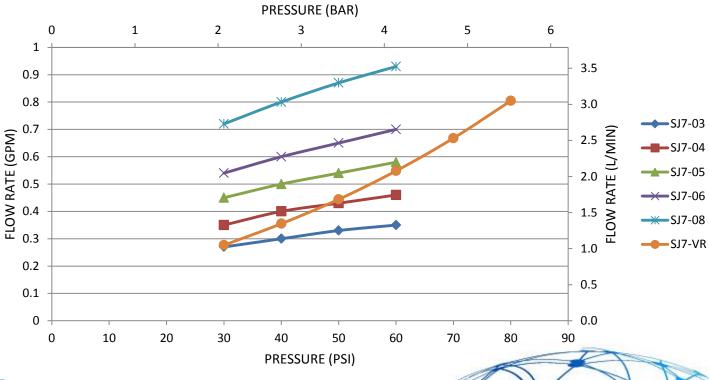
Variable Rate Applications –Liquid Fert.

Variable Rate Tech.

- Increasing in popularity
- Tech services companies growing
- Mapping in GPS

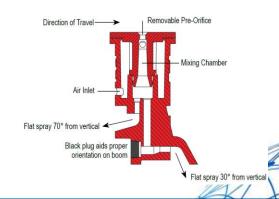


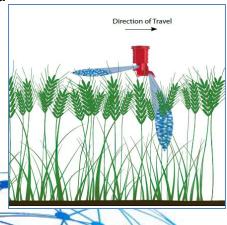
SJ7-VR –Variable Rate Nozzle



SJ7-VR VS STANDARD SJ7

Air Induction 3070


- Applications
 - Broadcast spraying, fungicide applications in cereal crops, targeted at seed head diseases, (i.e. Fusarium Head Blight)
- Features and Benefits

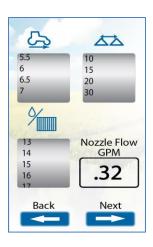

Dual Air Induction spray patterns: 30° forward, 70° backward

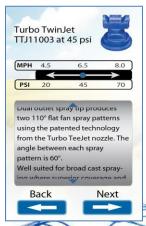
Wide operating pressure 20 - 90 psi (1.5 - 7 bar)

High Capacity Tips- Big Potential

- Turbo TwinJet:
 - -TTJ60-11008VP
 - -TTJ60-11010VP

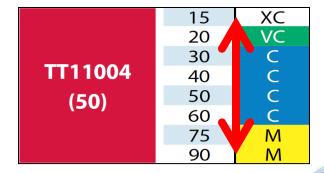
- Turbo TeeJet: Coming Soon!
 - -TT11010-VP
 - -TT11012-VP




SpraySelect- nozzle selection app

- User inputs speed, spacing, target rate
- Input fertilizer density, where applicable
- User selects droplet size or application type
- Outputs top tip recommendations with pressure

New tech. for modern spraying



Limitations of Sprayer with Rate Controller

- Inconsistent droplet size application
- Narrow application speed range

Narrow choice of application rate for variable rate

application

Introducing...DynaJet Flex 7120

- Maintains droplet size at changing speeds or application rates
- Sprayer control maintains application rate via regulating valve....

....and DynaJet maintains pressure via changing nozzle flow

Application Rate Technology

Type of Spraying	Constant	Speed Range	Rate	Pressure	Droplet Size
Speed & Pressure	Pressure	Fixed	Constant	Constant	Constant
Rate Controller	Rate	2:1 Range	Constant	Changes with speed	Changes with Pressure
DynaJet	Rate & Pressure (Droplet Size)	8:1 Range	Constant	Constant	Constant

CAN WE DO MORE?

Yes and we want to...

- Trade Shows, Seminars, Symposiums, Conferences
- Support Calls
- We want to know everyone
 - Application specialists, product managers (technical), agronomists, sales reps
 - Researchers, consultants, university personnel

What we Discussed...

- Nozzle evolution
- Nozzle design for drift control
 - Pressure Drop/ Air Induction
- Ag. Industry involvement/cooperation
 - Working with all in the ag. industry
- The future...
 - It's more than nozzles

Thank You

- Dave Brackmann
- e-mail: <u>dave.brackmann@teejet.com</u>
- Ph. 630-517-1337
- Cell: 630-803-1985
- www.teejet.com
- Feel free to contact me!

