WELCOME!

Welcome to Savannah and the 10th Annual Conference of The Pesticide Stewardship Alliance. It truly is great to have so many enthusiastic people from such diverse backgrounds gathered in one place with the same vision. TPSA is proud to facilitate such a gathering and very appreciative of its sponsors, who make this event possible through their generous financial contributions.

Attendees to the conference representing industry, academia, state and federal government are from all over the United States and six foreign countries. We have enjoyed participation from the international community for a number of years now and are excited that this year is no different.

Known as 'The Southern Belle of the Georgia Coast,' Savannah is enchanting, romantic, mysterious and intriguing. Anyone who visits here is immediately taken with her charm. Savannah was Georgia's first city, and has certainly remained one of the favorites of travelers throughout the years. What began as one of America's early colonies has developed into a city rich in history and culture.

We hope you enjoy your time in Savannah. We are pleased with what we feel is a fantastic program put together by some very hard working people within TPSA.

Kevin W. Neal  
President TPSA

Fred Gabriel  
Board Chairman TPSA

Many Thanks to TPSA’s 2010 Corporate Sponsors!

The Pesticide Stewardship Alliance (TPSA) is a non-profit organization that brings together technical experts, researchers, pesticide applicators, regulators, educators, crop protection industry, hazardous waste industry, agricultural plastic recyclers, environmental and public health constituents, students and others to promote and support improvements in stewardship of pesticides and agricultural plastics in the United States and internationally.
## PROGRAM DETAILS

(Two-page program overview is in centerfold of this booklet)

TPSA Pesticide and Ag Plastic Stewardship Conference – February 21-23, 2010
Hyatt Regency Savannah—2 West Bay St, Savannah Georgia USA 31402

### SUNDAY - FEBRUARY 21, 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3:30p</td>
<td>TPSA Board Meeting <em>(all are welcome)</em></td>
<td>Scarbrough 3 (lobby level)</td>
</tr>
<tr>
<td>4-6p</td>
<td><strong>Plenary: New Directions for Pesticides and Product Stewardship</strong></td>
<td>Harborside East (lower level)</td>
</tr>
<tr>
<td></td>
<td><strong>Moderator: Kevin Neal, Pesticide Investigator, Office of the Indiana State Chemist, and President, TPSA</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TPSA President’s Welcome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Keynote: New Directions at EPA for Pesticides and Product Stewardship</strong></td>
<td>Steven Bradbury, US EPA, Acting Office Director of the Office of Pesticide Programs</td>
</tr>
<tr>
<td></td>
<td>• <strong>Panel: Pesticides and Product Stewardship</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Jim Burnette, Director, Structural Pest Control and Pesticide Division, North Carolina Department of Agriculture and Consumer Services, and President-Elect, American Association of Pesticide Control Officials (AAPCO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tamsin Ettefagh, Vice President, Envision Plastics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Liza Fleeson, Program Manager, Office of Pesticide Services, Virginia Department of Agriculture and Consumer Services (VDACS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dave Scott, Pesticide Program Administration Manager, Office of the Indiana State Chemist</td>
<td></td>
</tr>
<tr>
<td>6-8:30p</td>
<td><strong>Opening Reception</strong></td>
<td>Windows (lobby level)</td>
</tr>
</tbody>
</table>

### MONDAY - FEBRUARY 22, 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-7:45a</td>
<td><strong>Breakfast</strong></td>
<td>Harborside East (lower level)</td>
</tr>
<tr>
<td>7-7:45a</td>
<td>Breakfast Roundtable with the TPSA Communication Committee</td>
<td>Harborside East (lower level)</td>
</tr>
<tr>
<td>8-9:30a</td>
<td><strong>Plenary: Green Chemistry in Pesticide Development and Degradation</strong></td>
<td>Harborside East (lower level)</td>
</tr>
<tr>
<td></td>
<td><strong>Moderator: Rob Denny, Arrowchase Environmental Project Management</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Keynote: Green Chemistry in Pesticide Development and Degradation</strong></td>
<td>Terry Collins, Director, Institute for Green Science, Carnegie Mellon University</td>
</tr>
<tr>
<td></td>
<td>• <strong>Panel: Green Chemistry Initiatives in the Pesticide Industry</strong></td>
<td>Andrew J. Goetz, Regulatory Stewardship and Strategy, BASF Corporation</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>9:30-9:45a</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>9:45-11:15a</td>
<td><strong>Session 1</strong></td>
<td></td>
</tr>
<tr>
<td>9:45-11:15a</td>
<td><strong>1A. Pesticides: Emerging Regulatory Issues</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: Scarbrough 1 (lobby level)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(i) National Pollutant Discharge Elimination System (NPDES)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderator: Cary Hamilton, Pesticide Registration &amp; Endangered Species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialist, New Mexico Department of Agriculture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• How State Pesticide Programs Can Support NPDES – Steve Cole,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Georgia Department of Agriculture, Pesticide Section</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NPDES Permitting System – Jay Ellenberger, Associate Division</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Director, US EPA Office of Pesticide Programs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ii) Overview of Seed Treatment Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderator: Allan Hovis, Stewardship Issues, Bayer CropScience</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Seed Treatment: Innovation Driven, Environmental Friendly,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Committed to Plant Health – Jennifer Riggs, Product Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manager, Bayer CropScience</td>
<td></td>
</tr>
<tr>
<td>11:15a</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:30a-1p</td>
<td><strong>Session 2</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>1B. Emerging End-Markets for Recycled Ag Films – Poster Presentations</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: Harborside East (lower level)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderator, Annie Macmillan, Toxicologist, Vermont Agency of Agriculture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EkoRoof Tiles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tiger Bullets (poster)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rubber Sidewalks/Terrewalks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ultimate Recycled Plastics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Think Plastics/Baleboard</td>
<td></td>
</tr>
<tr>
<td>1-1:15p</td>
<td><strong>Session 2A-8A: Workshop – Minimizing Spray Drift: Improving Application</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efficacy &amp; Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ All Spray Drift Workshop Sessions are located in Scarbrough 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(lobby level)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>2A. Spray Drift Mitigation Label Statement: Recognizing Base Principles</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderator: Carol Ramsay, Washington State University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Empirical Data Used for Label Statements – Scott Jackson, BASF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Efficacy and Drift: Recognizing the Conflicts – Scott Brethauer,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Illinois</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Revising the ASABE S-572 Droplet Standard and Its Practical Use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Bob Wolf, Extension Specialist, Application Technology, Biological</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Agricultural Engineering, Kansas State University</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>2B. Communicating Stewardship: A Mini-Workshop on Visual Communication</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of Pesticide Risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderator: Lois Levitan, Department of Communication, Cornell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Visual Communication of Pesticide Risk: A Mini Workshop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Cliff Scherer, Professor of Communication, Department of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication, Cornell University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Communicating Local Pesticide Disposal Program Information to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consumers – Sandra Keil, Earth 911</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TPSA International Project on Pesticide Container Disposal in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developing Countries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Don Mullins, Professor of Entomology, Virginia Tech</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The Need and Approach for Visual Media in Support of Pesticide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Container Stewardship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Rob Denny, Arrowchase Environmental Project Management</td>
<td></td>
</tr>
<tr>
<td>1:15-2:45p</td>
<td>Break before afternoon sessions</td>
<td></td>
</tr>
</tbody>
</table>

*Joint session of Pesticide Disposal and Recycling tracks*
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Details</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:45p</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>3:00p</td>
<td><strong>3A. Spray Drift Management: Application Technologies and Realities</strong></td>
<td>Scarbrough 1 (lobby level)</td>
</tr>
<tr>
<td></td>
<td><em>Moderator: Bob Wolf, Kansas State University</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Decision-Making Challenges for Aerial Application – Randy Hale, Hale Dusting Services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Where Applicators Really Get Their Weather Information – Dennis Gardisser, WRK of Arkansas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Air-Assisted Electrostatic Crop Spraying Halves Pesticide Total Environmental Load – S. Edward Law, Applied Electrostatics Laboratory, Driftmier Engineering Center, University of Georgia, Athens GA</td>
<td></td>
</tr>
<tr>
<td>3:45p</td>
<td><strong>3B. Organizing and Implementing Agricultural Film Collection Programs</strong></td>
<td>Scarbrough 2 (lobby level)</td>
</tr>
<tr>
<td></td>
<td><em>Moderator: Lois Levitan, Recycling Ag Plastics Project, Cornell University</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Collection and Processing of Waste Agricultural Film Mulch: A Case Study of a Pilot Program in Florida – Eugene B. Jones, Southern Waste Information eXchange</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The BigFoot Baler for Compacting Agricultural Plastics for Collection and Transport – Dennis Sutton, DLS Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Think Plastics: An Ag Film Collection Program Organized by a Plastics Manufacturer – Chuck Sparks, President, Think Plastics, Ontario CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Genesis Poly: An Ag Film Collection Program Organized by a Plastics Recycler – John Schmitz, Genesis Poly, Maple Grove, MN</td>
<td></td>
</tr>
<tr>
<td>4:30p</td>
<td><strong>3C. Disposing of Obsolete Pesticides: Update from the States</strong></td>
<td>Scarbrough 3 (lobby level)</td>
</tr>
<tr>
<td></td>
<td><em>Moderator: Kevin Neal, Pesticide Investigator, Office of the Indiana State Chemist</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Larry Boyleston, South Carolina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tony Cofer, Alabama</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Steve Cole, Georgia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dale Dubberly, Florida</td>
<td></td>
</tr>
<tr>
<td>4:45p</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>4:50p</td>
<td><strong>4A. Spray Drift: Current Regulatory Activity</strong></td>
<td>Scarbrough 1 (lobby level)</td>
</tr>
<tr>
<td></td>
<td>*Moderator: Dave Scott, Pesticide Program Administration Manager, Office of the Indiana State Chemist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Overview of EPA’s PRN Notice for Pesticide Drift – Cathryn O’Connell, Team Leader, US EPA Office of Pesticide Programs</td>
<td></td>
</tr>
<tr>
<td>5:30p</td>
<td><strong>4B-C. Recycling Mini-bulk Containers: What's Happening and What Needs to Happen</strong></td>
<td>Scarbrough 2 (lobby level)</td>
</tr>
<tr>
<td></td>
<td><em>Moderator: Nancy Fitz, Chemical Engineer, U.S. EPA Office of Pesticide Programs</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Managing Mini-bulks Made Obsolete in 2011 – Marty Fitzpatrick, Manager Product Stewardship, BASF Crop Protection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ACRC's Involvement with Mini-bulk Recycling – J.D. Fish, Application Technology Manager, Bayer CropScience</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pesticide Containers: Solving the IBC Handling and Recycling Puzzle – Steve Wiest, US Market Segment Manager, Crop Production Services, Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- North Carolina's Experience with Mini-bulk Recycling – Derrick Bell, LG, CHMM, Pesticide Disposal Assistance Program, North Carolina Department of Agriculture and Consumer Services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Overview of EPA Project: Pilot Program to Collect and Recycle Non-Compliant Mini-bulk Containers – Margaret L. Jones, Environmental Scientist, Pesticides Section, US EPA Region 5</td>
<td></td>
</tr>
<tr>
<td>6:15p</td>
<td>Joint session of pesticide disposal and recycling tracks</td>
<td></td>
</tr>
<tr>
<td>7:00p</td>
<td>Grand Reception for Participants and Guests</td>
<td>Windows (lobby level)</td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td>Location</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------------------------------------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>7:00-8:15a</td>
<td><strong>Breakfast</strong></td>
<td>Harborside East (lower level)</td>
</tr>
<tr>
<td>7:15-8:15a</td>
<td><strong>Breakfast Roundtables</strong></td>
<td>Harborside East (lower level)</td>
</tr>
<tr>
<td>7:30, 7:50, 8:20a</td>
<td><strong>Water Taxi Departs for the Golf Course Pesticide Stewardship and IPM Sessions</strong></td>
<td>Hotel to The Club at Savannah Harbor for sessions 5-7D, 8:30a-2:45p.</td>
</tr>
<tr>
<td>8:30-10a</td>
<td><strong>Concurrent Session 5</strong> - <strong>5A. Spray Drift: Current Mitigation Measures</strong></td>
<td>Scarbrough 1 (lobby level)</td>
</tr>
<tr>
<td>8:30-10a</td>
<td><strong>5B. Plastics to Oil and Fuel: Emerging Technologies, Regulatory and Economic Issues</strong></td>
<td>Scarbrough 2 (lobby level)</td>
</tr>
<tr>
<td>8:30-10a</td>
<td><strong>5C. Emerging Technologies for Destruction of Obsolete Pesticides and Residues</strong></td>
<td>Scarbrough 3 (lobby level)</td>
</tr>
</tbody>
</table>

**Ag Container Recycling Council (ACRC) Pesticide Container Collection Services in East Coast States**
Facilitated by Ron Perkins, Executive Director, ACRC, and Sam Gibson, USAg Recycling, ACRC Contractor

**International Participation in TPSA**
Facilitated by Don Mullins, Professor of Entomology, Virginia Tech and Rob Denny, Arrowchase Environmental Project Management

---

**Ag Container Recycling Council (ACRC) Pesticide Container Collection Services in East Coast States**
Facilitated by Ron Perkins, Executive Director, ACRC, and Sam Gibson, USAg Recycling, ACRC Contractor

**International Participation in TPSA**
Facilitated by Don Mullins, Professor of Entomology, Virginia Tech and Rob Denny, Arrowchase Environmental Project Management

---

**Water Taxi Departs for the Golf Course Pesticide Stewardship and IPM Sessions**
Transportation provided by water taxi leaving from the Hotel to The Club at Savannah Harbor for sessions 5-7D, 8:30a-2:45p.

---

**5A. Spray Drift: Current Mitigation Measures**

Moderator: Scott Jackson, BASF

- Aerial Application Optimization: https://agsync.com/ – Jim Gaffney, BASF
- Operation S.A.F.E for Spray Quality Performance/Web-based Decision-making – Dennis Gardisser, WRK of Arkansas
- Drift Watch – Dave Scott, Pesticide Program Administration Manager, Office of the Indiana State Chemist

**5B. Plastics to Oil and Fuel: Emerging Technologies, Regulatory and Economic Issues**

Moderators, Roger Springman, WI Department of Agriculture, and Jim Garthe, Pennsylvania State University

- Agri-Plas to Crude: Progress, Trials and Tribulations in Commercializing this Technology to Convert Agricultural Plastic Waste to Plastic Resins – Mary Sue Gilliland, Vice President for Development, Agri-Plas, Kizer OR
- Balcones Fuel Technology Plastic-derived Fuel – Randy Wolf, Vice President L&S Demolition Recycling and Business Development Manager-East, Balcones Fuel Technology, Conshohocken, PA
- Plastofuel: Automating and Commercializing this WiE Process – Jim Garthe, Agricultural Engineer and Instructor, Department of Agricultural and Biological Engineering, Pennsylvania State University
- State-Level Perspective from Georgia on Regulation and Permitting of Fuel Technologies – David Lyle, Program Manager, Georgia Department of Environmental Protection, Savannah, GA
- Wood Residuals Solutions: Using Agricultural Plastic as a Bio-Fuel Enhancer – Tom Talbot, President, Glen Oak Lumber and Wood Residual Solutions, Montello, WI

**5C. Emerging Technologies for Destruction of Obsolete Pesticides and Residues**

Moderator, Rob Denny, Arrowchase Environmental Project Management

Introduction
- The Mandate for Sustainable, Local Treatment and Destruction Technologies for Pesticides and other Persistent Organic Pollutants – Rob
### In Situ Residue Treatments
- **Enzyme Enabled Remediation of Pesticide Residues** – Cameron Begley, CSIRO Entomology, Canberra, Australia
- **Total Degradation of Pure and Formulated Organophosphorous Pesticides by Catalytic Oxidation with Fe$^{III}$-TAML and H$_2$O$_2$**
  - Soumen Kundu, Carnegie Mellon University, USA
- **Remediation of Soils Impacted by Organochlorine Pesticides Using the DARAMEND® Technology**
  - Andrzej Przepiora, Senior Hydrogeologist, EnviroMetal Technologies Inc., an Adventus Company

### Extraction and Destruction Technologies
- **Practical Aspects of Phytoextraction: Six Years of Field Studies at Sites Historically Contaminated with Persistent Organic Pollutants (POPs)**
  - Barbara A. Zeeb, Royal Military College of Canada
- **The FRALMA Mobile Unit for the Destruction of Pesticides and PCB-Contaminated Oil**
  - Norah Pierdant and Rene Comellier, FRALMA Technologie Inc., Quebec and BC, Canada
- **Radicalplanet® Technology (RPT): Alternative Technology for Destruction of Obsolete Pesticides**
  - Kaoru Shimme, President, Radicalplanet Technology Research Institute Co. Ltd., Nagoya-City, Japan

### 5D. Golf Course Pesticide Stewardship and IPM
*Location: The Club at Savannah Harbor, access via water taxi*

**Moderator, Kevin Neal, Office of the Indiana State Chemist.**
- Perceptions and Reality: Pesticide Use on Golf Courses
  - Clint Waltz, University of Georgia Turf Grass Management
- Pesticide Law Enforcement, Indiana Golf Course Case Study – Joe Becovitz, Pesticide Program Specialist, Office of Indiana State Chemist
- Golf Course Pesticide Application Practices and Use; Highlights from GCSAA’s Golf Course Environmental Profile
  - Clark Throssell, GCSAA Director of Research
- Pesticides and the Pros Preparing for PGA Event, IPM in the USGA – Lynn Childress, Course Superintendent, The Club at Savannah Harbor. After lunch, Lynn will lead a tour of the facility.

### Concurrent Session 6
**10:15-11:45a**

**6A. Constructing Desirable and Practical Label Statements for Spray Drift Mitigation – a Facilitated Discussion**
*Location: Scarbrough 1 (lobby level)*

**Moderator: Jay Ellenberger, US EPA**
- Wind Direction and Speed – Dave Scott, Pesticide Program Administration Manager, Office of the Indiana State Chemist
- Temperature Inversions – Carol Ramsay, Washington State University
- Buffers and No Spray Zones – Gail Amos, Washington State Department of Agriculture

**6B. Plastics to Oil and Fuel: Emerging Technologies, Regulatory and Economic Issues**
*Location: Scarbrough 2 (lobby level)*

(continuation of Session 5B)

**6C. Emerging Technologies for Destruction of Obsolete Pesticides and Residues**
*Location: Scarbrough 3 (lobby level)*

(continuation of Session 5C)

**6D. Golf Course Pesticide Stewardship and IPM**
*Location: The Club at Savannah Harbor, access via water taxi*

(continuation of Session 5D)

### 11:45-noon
**Break**

### Noon-1p
**Lunch**

*Location Harborside East (lower level) or at the Club at Savannah Harbor*
| Session 7 1:15-2:45p | **7A. Obtaining Efficacy and Drift Reduction**  
Moderator: Gail Amos, Washington State Department of Agriculture  
Applicator Tools for Optimizing Coverage, Minimizing Drift  
- Carolyn Baecker, CP Products  
- Will Smart, Greenleaf Technologies  
**EPA’s Drift Reduction Technology: Status of Process** – Jay Ellenberger, Associate Division Director, US EPA Office of Pesticide Programs  
**Location:** Scarbrough 1 (lobby level) |
| --- | --- |
| Session 7 2:45-3p | **7B. Industry-Driven Product Stewardship: How Could It Work?**  
Moderator: Lois Levitan, Recycling Ag Plastics Project, Cornell University  
- Integrated Horticultural Alliance: Recycling Nursery Containers – Joe Farinacci, IHA  
- Industry Engagement in the Earth 911 Product Stewardship Model – Sandra Keil, Earth 911  
- Perspective of the Plastic Mulch Manufacturing Industry — Dennis Sutton, Film Tek Corp., subsidiary of the Sigma Plastics Group  
- Perspective of a Plastics Recycler – Tamsin Ettefagh, Vice President, Envision Plastics  
**Location:** Scarbrough 2 (lobby level) |
| Session 7 3-3:45p | **7D. Golf Course Pesticide Stewardship and IPM**  
(continuation of Session 5D)  
**Location:** The Club at Savannah Harbor, access via water taxi |

| Concurrent Session 8 3-4:30p | **8A. Action Plan to Move Ahead on Spray Drift Mitigation**  
Roundtable facilitated by Carol Ramsay, Washington State University  
**Location:** Scarbrough 1 (lobby level) |
| --- | --- |
| Concurrent Session 8 3-4:30p | **8B. “TPSA Approved”: The Role of Standards/Certification and Green Purchasing in Moving Ag Plastic Markets Forward**  
Roundtable facilitated by Roger Springman, Wisconsin Department of Agriculture  
**Location:** Scarbrough 2 (lobby level) |
| Session 8 3-4:30p | **8C. Update on Implementing US EPA’s Pesticide Container-Containment Regulations**  
Panel discussion moderated by Liza Fleeson, Program Manager, Office of Pesticide Services, Virginia Department of Agriculture and Consumer Services (VDACS)  
**Location:** Scarbrough 3 (lobby level) |
| Session 8 5p onwards | Off-site event at Paula Dean’s restaurant, “The Lady & Sons” at the corner of Congress and Whittaker Streets |
**PROGRAM OVERVIEW**

TPSA Pesticide and Ag Plastic Stewardship Conference – February 21-23, 2010

Hyatt Regency Savannah—2 West Bay St, Savannah Georgia USA 31402

<table>
<thead>
<tr>
<th>Location of Concurrent Sessions:</th>
<th>A: Scarbrough 1 (lobby level)</th>
<th>B: Scarbrough 2, unless otherwise noted</th>
<th>C: Scarbrough 3, unless otherwise noted</th>
<th>D: Golf Course</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>SUNDAY - FEBRUARY 21, 2010</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3:30p</td>
</tr>
<tr>
<td>Location: Scarbrough 3 (lobby level)</td>
</tr>
</tbody>
</table>

| 4-6p | Plenary #1 |
| Location: Harborside East (lower level) |
| TPSA President’s Welcome: Kevin Neal, Office of the Indiana State Chemist | Keynote: **New Directions at EPA for Pesticides and Product Stewardship** Steven Bradbury, US EPA, Acting Office Director of the Office of Pesticide Programs | Panel: Pesticides and Product Stewardship |

| 6-8:30p | Opening Reception |
| Location: Windows (lobby level) |

<table>
<thead>
<tr>
<th><strong>MONDAY - FEBRUARY 22, 2010</strong></th>
</tr>
</thead>
</table>

| 7-7:45a | Breakfast & Roundtable |
| Roundtable: TPSA Communication Committee Meeting |

| 8-9:30a | Plenary #2 |
| Location: Harborside E |

| 9:30-9:45a | Break |
| 9:45-11:15a | Concurrent Session #1 |
| Pesticides: Emerging Regulatory Issues: |
| (i) National Pollutant Discharge Elimination System (NPDES) | Emerging End-Markets for Recycled Ag Films – Poster Presentations |
| (ii) Overview of Seed Treatment Issues | Pesticides: Emerging Regulatory Issues |
| Joint session of Pesticide Disposal & Spray Drift tracks |

| 11:15a | Break |

| 11:30a-1p | Awards Lunch & Member Meeting |
| Location: Harborside East |

<p>| 1:15-2:45p | Concurrent Session #2 |
| WORKSHOP – SESSIONS 2-8 |
| MINIMIZING SPRAY DRIFT: IMPROVING APPLICATION EFFICACY &amp; COMMUNICATION |
| Spray Drift Mitigation Label Statement: |
| Communicating Stewardship: A Mini-Workshop in Visual Communication of Pesticide Risk |
| Joint session of Pesticide Disposal &amp; Recycling tracks |</p>
<table>
<thead>
<tr>
<th>Location of Concurrent Sessions:</th>
<th></th>
<th>A: Scarbrough 1 (lobby level)</th>
<th>B: Scarbrough 2, unless otherwise noted</th>
<th>C: Scarbrough 3, unless otherwise noted</th>
<th>D: Golf Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon 2:45-3p</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4:30p</td>
<td>Concurrent Session #3</td>
<td>Spray Drift Management: Application Technologies and Realities</td>
<td>Organizing and Implementing Agricultural Film Collection Programs</td>
<td>Disposing of Obsolete Pesticides: Update from the States</td>
<td></td>
</tr>
<tr>
<td>4:30-4:45p</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-10p</td>
<td>Grand Reception for Participants and Guests</td>
<td></td>
<td></td>
<td></td>
<td>Location: Windows (lobby level)</td>
</tr>
</tbody>
</table>

**TUESDAY - FEBRUARY 23, 2010**

<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:15-8a</td>
<td>Breakfast Roundtables</td>
</tr>
<tr>
<td>7:30-10a</td>
<td>Concurrent Session #5 Spraying for Current Mitigation Measures</td>
</tr>
<tr>
<td>8-10a</td>
<td>Roundtable: Ag Container Recycling Council (ACRC) Pesticide Container Collection Services in East Coast States</td>
</tr>
<tr>
<td>10:10-11a</td>
<td>Break</td>
</tr>
<tr>
<td>10:15-11:45a</td>
<td>Concurrent Session #6 Constructing Desirable and Practical Label Statements for Spray Drift Mitigation – a Facilitated Discussion</td>
</tr>
<tr>
<td>11:45-noon</td>
<td>Break</td>
</tr>
<tr>
<td>noon-1p</td>
<td>Lunch</td>
</tr>
<tr>
<td>1-2:45p</td>
<td>Concurrent Session #7 Obtaining Efficacy and Drift Reduction</td>
</tr>
<tr>
<td>2:45-3p</td>
<td>Break</td>
</tr>
<tr>
<td>3-4:30p</td>
<td>Concurrent Session #8 Roundtable: Action Plan to Move Ahead on Spray Drift Mitigation</td>
</tr>
<tr>
<td>4-5:30p</td>
<td>Roundtable: “TPSA Approved”: The Role of Standards/Certification and Green Purchasing in Moving Ag Plastic Markets Forward</td>
</tr>
<tr>
<td>6-7p</td>
<td>Update on Implementing US EPA’s Pesticide Container-Containment Regulations: Panel Discussion</td>
</tr>
</tbody>
</table>

Location: Harborside East (lower level)  
Transport from hotel provided by water taxi
| 5p onward | **Off-site event at Paula Dean’s restaurant, “The Lady & Sons” at the corner of Congress and Whittaker Streets** |
Poster and Presentation Abstracts
Listed alphabetically by name of the presenting author (name in caps)

TPSA Pesticide and Ag Plastic Stewardship Conference – February 21-23, 2010
Hyatt Regency Savannah—2 West Bay St, Savannah Georgia USA 31402

Authors: Scott, Colin and Cameron Begley, CSIRO Entomology, Canberra, Australia
[Email: Cameron.Begley@csiro.au]

Title: Enzyme Enabled Remediation of Pesticide Residues

Abstract: There are increasing concerns from both regulators and consumers around the world about residues of synthetic pesticides and herbicides in environmental and potable water and on horticultural commodities. A variety of remediation strategies have been tried, with variable levels of success, depending on the specifics of the contamination problem. However there have been no satisfactory remediation solutions for removing residues from contaminated waters, such as can be generated in the run-off from irrigated agriculture, animal and commodity dips etc.

To address this need we have been developing a free-enzyme bioremediation technology which uses the catalytic efficiency and specificity of certain enzymes to deliver cost effective contaminant detoxification. Unlike other (microbial) bioremediation technologies, free-enzyme bioremediation is not dependent upon the growth of intact organisms, so the rate of detoxification is directly linked to the catalytic properties of the enzyme employed and the concentration of enzyme applied. Equally, the lack of reliance on whole organisms allows the use of modern enzyme engineering techniques to optimise the enzymes for the purpose, without requiring the release of genetically modified organisms. We have developed enzymes for several pesticides and herbicides and shown them to be fit for purpose in large-scale field trials. The first of them, for organophosphate insecticides, is now being used commercially in some jurisdictions. We will summarise some of the key technical and commercial issues involved in developing and deploying free-enzyme bioremediants for a range of applications.

Session: 5-6C

Authors: BROOKER, Deborah, OMAFRA, Ontario, Canada
[Email: Deborah.Brooker@ontario.ca]

Title: Options for Building an On-going Collection and Disposal Program for Unwanted Agricultural Pesticides and Animal Health Care Products In Ontario – Results of a Pilot Project and Feasibility Study

Abstract: Pesticide collection programs have been supported by industry and government partners in Canada for over 10 years. In 2009, CropLife Canada partnered with a diverse group of industry associations and the Ontario Ministry of Agriculture, Food and Rural Affairs to run a 3 day collection and disposal program for both unwanted pesticides and veterinary medicines as a free service to farmers. The 2009 initiative also included a feasibility study on options to establish an on-going program in Ontario that would provide a low cost, efficient, environmentally responsible system for farmers to collect and dispose of their unwanted pesticides and animal health care products.

Session: Poster

Authors: COLLINS, Terrence
Director, Institute for Green Chemistry, Carnegie Mellon University,
4400 Fifth Ave, Pittsburgh, PA 15213 USA
[Email: tc1u@andrew.cmu.edu]

Title: Green Chemistry in Pesticide Development and Degradation

Abstract: • How will green chemistry make the production of pesticides more eco friendly. For instance much of the world's environmental loading from pesticides takes place due to the number of intermediaries that need treatment or disposal in the manufacturing phase. What to do?
• Can Green Chemistry help design pesticides that more specifically target just the intended pest and self destruct when the job is done?
• Using Green Chemistry to manage energy and water consumption, fertilization and more on farms.

Session: Keynote

Authors: Denny, Robert L.
Arrowchase Environmental Project Management, Vilnius, Lithuania
[Email: rdenny@arrowchase.com]

Title: The Need and Approach for Visual Media in Support for Pesticide Container Stewardship

Abstract: A few years ago, the FAO saw the need to develop more uniform guidance on pesticide container stewardship, correctly recognizing container-handling challenges to human health, but also the creation of a “model” for container stewardship around the globe. The predominantly text 2006 Guidelines on Management Options for Empty Pesticide Containers normalizes the FAO ideals for empty pesticide container stewardship. Implementing this Code of Conduct is now a task before the world community. In some instances, this is not difficult; in other regions of the world it is not as easy. If a significant number of pesticide handlers cannot adequately read the FAO Code or any textural training materials, then environmental health remains a challenge. For example, of approximately 195 nations, 10 of the countries with the highest levels of illiteracy are disproportionately located in Equatorial or Central Africa and most of these nations have pesticide stewardship issues.

Understanding any written language (“literacy”) is not the only impediment to pesticide safety. In fact, the worldwide ability to read is quite high. One has to look below the ranking of 150 out of 195 nations to reach less than 66.6% literacy levels.
Ethnologue lists 6,809 living world languages. This suggests that the largest impediment to communication is often availability of training in a given language, rather than illiteracy. The six FAO languages are a good start, but only a start.

In 2008, The Pesticide Stewardship Alliance recognized the contribution of the FAO Code of Conduct for pesticide container stewardship and sought capacity building solutions to the issues of illiteracy and language diversity among users of pesticides. Arrowchase was the recipient of a grant to develop visual media to support the FAO Code. No attempt was made to alter the message of the FAO in any way, but merely to provide memorable visual cues that could be used by trainers anywhere in the world, even where translations are not available. This project is complete and will be freely available on the TPSA website.

SESSION 2B-C

AUTHORS DENNY, Robert L. Archowchase Environmental Project Management, Vilnius, Lithuania

TITLE The Mandate for Sustainable, Local Treatment and Destruction Technologies for Pesticides and other Persistent Organic Pollutants

ABSTRACT Obsolete pesticide recovery and disposal programs began in North America and Europe in the 1980's and early 1990's. From that time until relatively recently, the prices of fossil fuels used for both incineration and transportation of the material destined for destruction were relatively low. Adjusted to current prices, the crude oil price per barrel was $25 - $50 USD during most of this phenomenal growth in pesticide stewardship. This favorable pricing structure changed in the last decade, and now with new concerns for global warming and excess long shipping routes, there is interest in emerging technologies that not only remove the need for thermal incineration, but also the destruction technology to physically move to the contaminated site.

SESSION 5-6C

AUTHORS FISHEL, F.M.1, R. Clarke2, J.L. Price2, and D.W. Dubberly3
1Department of Agronomy, University of Florida, Gainesville, FL
2Florida Department of Environmental Protection, Tallahassee, FL
3Florida Department of Agriculture and Consumer Services, Alachua, FL

TITLE Operation Cleansweep in Florida: A History of a Successful Pesticide Disposal Option

ABSTRACT Operation Cleansweep is a free pesticide disposal program that has operated in Florida since 1995. The program is open to commercial facilities, including agricultural production establishments, golf course operators, and pest control companies. Since its inception, the program has had approximately 2,000 participants and collected more than 1,300,000 pounds of unused pesticides. Funding for the program has been primarily through the Florida Legislature and overseen by a steering committee represented by various state agencies, the University of Florida, and state commodity associations.

SESSION Poster

AUTHORS GAFFNEY, Jim BASF Corporation, Technical Marketing, 5401 Windy Gap Court, Raleigh, NC 27617

TITLE Aerial Application Optimization: https://agsync.com/

ABSTRACT Aerial application is the number one means of applying fungicides to corn and remains a nearly equally important service for soybeans, wheat, and numerous other crops. As the disease control and plant health segment has grown over the past five years the visibility of aerial application to those unfamiliar with agriculture has also grown. Research and evaluation of, and investment in, various tools, technology, and services to optimize aerial application were initiated in 2008 and 2009 to meet the numerous challenges. Investment in and evaluation of mapping technologies was initiated to determine the ability of applicators to view routes and obstacles and evaluate wind direction before leaving the ground. Initiatives were also undertaken to improve participation in Operation SAFE (Self-regulating Application & Flight Efficiency) Fly-Ins. Based on the results of these evaluations and initiatives, the agricultural aviation industry has the tools and technology available to meet the needs and expectations of a diverse group of customers, which include growers, regulators, and the public.

SESSION 5A

AUTHORS HIPKINS, P. A. Hipkins, D E. Mullins, K. Gamby, and I. Sidibé Department of Entomology, VA Tech, Blacksburg, VA 24061

TITLE Development and Delivery of a Pesticide Safety Education Program in West Africa

ABSTRACT Pesticide safety education is one component of a Quality Assurance program for horticultural crops grown in West Africa. Proper pesticide use facilitates acceptance of export crops and provides abundant safe food in local markets. Pesticide safety training also protects human health and the environment.

West African agricultural scientists and educators are actively involved in curriculum development and “train-the-trainer” sessions, which prepare field agents to deliver technical information about IPM and pesticide management to farmers. Support materials include lesson plans and poster books for trainers and booklets for farmers, which are available for general distribution as PDF files and can be accessed on the West African IPM web site.

Key Words: Pesticide safety education, West Africa, train-the-trainer, pesticide management

SESSION Poster
The work presented will demonstrate the efficacy of FeIII in the degradation of pure and formulated organophosphorous pesticides. Existing chemical degradation approaches are expensive, difficult to use, and burdened by residual toxicity. The pest controlling benefits are often marred by inherent toxicity and especially by endocrine disruption. Organophosphorus (OP) insecticides account for an estimated 34% of worldwide insecticide sales and 70% of all pesticides used in the United States. The pest controlling benefits are often marred by inherent toxicity and especially by endocrine disruption associations that bring a new and troubling dimension to the health and environmental concerns of synthetic pesticides use. Existing chemical degradation approaches are expensive, difficult to use, and burdened by residual toxicity and post-treatment requirements. Thus, there is a need for an effective non-combustion degradation process for the safe and inexpensive disposal of unwanted OP pesticides. The work presented will demonstrate the efficacy of FeIII-TAML/H2O2 in oxidatively degrading pure fenitrothion, parathion,
methyl chlorpyrifos, including the parent compounds and the distinctive ligand on phosphorus. We will also present a simple methodology for destroying chlorpyrifos in an emulsifiable concentrate formulation under ambient laboratory conditions to small acids and simple minerals. The effectiveness of this versatile, easy-to-use, green process was demonstrated by the significantly reduced toxicity of the final reaction mixtures as measured by Microtox® assay. Multiple analytical techniques were used to monitor the reactions and detect the end products of the oxidation process.

SESSION 5-6C

AUTHORS LAW, S. Edward
Driftmier Engineering Center, University of Georgia, Athens, GA 30602-4435

[Email: edlaw@engr.uga.edu]

TITLE Air-Assisted Electrostatic Crop Spraying Halves Pesticide Total Environmental Load

ABSTRACT Improved application technology, which incorporates aerodynamic energy and electric force fields to greatly enhance on-target deposition of reduced-volume and reduced-diameter pesticide sprays, achieves efficacious pest control typically using half or less active ingredient dispensed into the ecosystem...while proportionally reducing off-target drift. Fundamental physics underlying this air-assisted, electrostatic-induction, charged-spraying process dictates small droplets in the 30-40 micrometer median-diameter range in order for electric forces to exert droplet control tens-of-times greater than gravity (e.g., see video of spray charging OFF-ON-OFF-ON at www.ael engr.uga.edu/downloads/ElectrostaticSprayingBlueberry.mpg ).

Unfortunately, well intentioned standards and label restrictions which set minimum values for gal/acre and droplet diameters, in an attempt to control the problems of off-target drift from conventional hydraulic-atomizing nozzles, severely impede commercial implementation of this proven alternative application technology and others. The presentation briefly reviews the scientific basis of the process, its engineering development, commercialization via U.Ga. patent licensing (www.maxcharge.com ), and documentation of its performance as reported in over 100 refereed-journal publications spanning the past three decades. http://www.engr.uga.edu/~edlaw

SESSION 3A

AUTHORS LEVITAN, Lois
Program Leader, Recycling Ag Plastics Project
Department of Communication, Cornell University, Ithaca NY 14853

[Email: lcl3@cornell.edu]

TITLE Recycling Ag Plastics Project (RAPP): Life Cycle Stewardship of Agricultural Plastics

ABSTRACT The Recycling Ag Plastics Project is developing infrastructure and markets for the waste film and rigid plastics that are generated from dairy, livestock, horticulture, maple syrup production and other sectors of agriculture. RAPP is working with partners from the agriculture and solid waste/recycling communities to develop full service ag plastic collection programs in New York State, and to figure out how to make these and other ag plastics recycling programs sustainable.

The collection of agricultural plastics for recycling (as well as for re-use and other value-recovery processes) has not been easy because they are typically dirtier than other used plastics, and may be contaminated by mixed resins and chemical residues. They are also bulky and widely dispersed across the rural landscape, all of which adds complexity and cost to collection. To jump these hurdles, RAPP is: (i) promoting farmer adoption of best management practices to keep ag plastic in condition to be recycled; (ii) acquiring mobile baling equipment to compact used plastic for cost-efficient transport from farms to recyclers; (iii) cultivating manufacturing markets to process used plastic into new products such as plastic lumber, roof tiles and sweet crude oil; (iv) promoting consumer purchase of products made from recycled ag plastics; and (v) facilitating an international dialog to further the product stewardship of agricultural plastics.

RAPP is a Cornell University-based collaboration with farmers and organizations, agencies and businesses representing agriculture, environmental protection, economic development, and solid waste/recycling. Funding has come from the NY Farm Viability Institute, the NYS Department of Environmental Conservation, US EPA Region 2 Pollution Prevention, USDA Rural Utilities Services/NEWMOA, USDA Hatch/Smith-Lever. On the web at http://environmentalrisk.cornell.edu/AgPlastics.

SESSION Poster

AUTHORS MULLINS1, Donald E, Pat A Hipkins1 and Margaret I Jones2
1Department of Entomology, VA Tech, Blacksburg, VA 24061
2Pesticides Section, Chemicals Management Branch, Land and Chemicals Division, US EPA Region 5, 77 West Jackson Boulevard, LC-8J, Chicago, IL 60604

[Email: mullinsd@vt.edu]

TITLE Development of a Training Program for Triple Rinse and Disposal of Pesticide Containers in Developing Countries

ABSTRACT Risks associated with exposure to pesticides from unrinised or poorly rinsed containers are still very real in many parts of the world. Reports of illness associated with the reuse of improperly rinsed containers continue to appear. Inappropriate disposal can also lead to contamination of precious resources including drinking water sources and ecosystems. As a result, there is a need for pesticide safety programs in developing countries to educate users on the need for triple rinsing and rendering pesticide containers unusable before disposal. This process is compromised because in many parts of the world empty containers have value and are often reused with serious consequences. We are developing a “basic” triple rinsing and pesticide container destruction and disposal scenario for audiences in countries where conditions and facilities may be rudimentary.

SESSION Poster
**Overview of EPA’s PRN Notice for Pesticide Drift**

**ABSTRACT** The session will cover the process EPA is undertaking with the Pesticide Registration Notice (PRN) for Spray Drift Labeling, general themes of comments received and EPA’s plan for moving forward with the PRN.

**SESSION** 4A

**AUTHORS** PIERDANT, Norah Pierdant and Rene CORNELLIER
FRALMA Technologie Inc., 91, chemin des Patriotes
Saint-Mathias, Québec, Canada, J3L 6A1

**ABSTRACT** The most widespread and most effective technique for destroying PCB-contaminated oil is high temperature incineration or thermal destruction. Properly employed, it allows the PCBs/PCTs contained in these oils to be effectively destroyed without endangering the environment or human health. It is particularly effective for destroying oils contaminated with high concentrations. When improperly done, there is the possibility of highly toxic and harmful dioxin and furan emissions. But a series of parameters exists to ensure that incineration is effective and that the constituents are destroyed. Temperature, gas flow, and residence time are just some of the parameters that must be scrupulously followed and observed to ensure that a destruction rate of 99.9999% and over is attained. These parameters do not change, regardless of the size of the facility involved.

So far contaminated oil with high PCBs concentration has been done by large-scale incineration plants. The FRALMA Unit presents an innovative way that can properly deal with destruction of high PCBs concentrations, in a small piece of equipment.

With the Stockholm Convention deadlines for store PCBs contaminated oil destruction just around the corner; this 1 ton/day capacity piece of equipment not only represents an economic way of destruction, but an advantage to the environment, eliminating transportation, handling and shipping costs of hazardous wastes to far locations.

The prototype used during tests in Canada was built in 2002 and updated during 2005-2009. The first commercial unit to Brazil was shipped in January 2010. The commercial unit’s main components are:

- Oil contaminated reservoir: (UN Approved) with pumping and homogenizing systems
- Combustion chamber at 99.9%: running at 850° C with diesel and using the contaminated oil itself when it gets to the right temperature as fuel to continue the batch.
- Destruction chamber: running at 1,200° C and destroying all furans and dioxins, offers an efficiency of 99.9999% or better. Both chambers have sealed doors to facilitate cleaning inside the chambers when necessary.
- Exhaust and flue gas cooling tube: that lowers the temperature of the gas from 1,200 to 500° C. The cooling tube presents a unique delta to this process.
- Dry scrubber system: that utilises zeolite cartridges to capture chlorine.
- Detachable chimney: with samples probes to continuously read CO, HCL, CO2, O2, SO2 emissions.
- PC controls for gas analyzer and operation: with a custom made program that offers the possibility of creating a variety of statistics, comparisons and profiles.
- Continuous gas analyzer system
- Diesel generator: for remote areas

**SESSION** 5-6C and Poster

**AUTHORS** PRZEPIORA, A.¹, Seech, A.² and Mueller, J.³
¹Adventus Canada, Waterloo, ON, Canada
²Adventus Americas, Corona Del Mar, CA
³Adventus Americas, Freeport, IL

**TITLE** Remediation of Soils Impacted by Organochlorine Pesticides Using the DARAMEND® Technology

**ABSTRACT** DARAMEND® is an advanced biological treatment technology for soil, sediment and solid wastes contaminated with recalcitrant organic compounds. When applied to organochlorine pesticides (OCPs), the key to this remedial approach is composition of the DARAMEND soil amendment and application of repeated and sequential anoxic and oxic conditions to the soil matrix. The patented soil amendment is comprised of plant fiber-based organic material and reduced, micro-scale iron. The treatment results in the sequential reductive dechlorination and aerobic biodegradation of chlorinated organic compounds. The amendment is typically applied at low rates (i.e.; < 4% w/w) and therefore causes very little, if any, bulking of the soil volume following treatment. Over the last 15 years, the technology has been used successfully for in-situ and ex-situ treatment of soils contaminated with a range of OCPs, including HCHs, DDT, toxaphene, 2,4-D, atrazine, dieldrin and metolachlor at sites in North America and Europe.

This presentation will include an overview of treatment mechanisms for OCP degradation using DARAMEND. In addition, results from recent field applications of the technology will be presented.

**SESSION** 5-6C

**AUTHORS** RACK, Ralph, USAID/Deliver Project

**TITLE** 100 Million Replacement Long-Lasting Insecticide-Treated Bed Nets (LNs) to be Distributed by the End of 2010:

[Email: rrack@jsi.com]
Are the Old Ones a Potential Threat?

International efforts to scale up malaria control have greatly expanded LN coverage with over 60,000,000 LNs distributed in 2008 and an estimated 250,000,000 additional LNs to be distributed by 2010. What does this possibly mean? What are people currently doing with their old nets, when they stop using these nets for sleeping? Are they thrown away or used for other purposes. What benefits and risks arise from these other uses? If there are harmful effects from these old nets, they are already occurring on a large and rapidly expanding scale.

The global public health community needs to urgently explore options for LNs eventual fate that are environmentally, socially and economically acceptable.

A demonstration project of environmentally-sound management (ESM) of LNs, is currently being developed to explore whether and when expired nets are an issue and identify options to prevent the potential impact of expired nets and promote a life-cycle approach to product management.

In addition, a number of LN manufacturers are exploring options for identifying and tracking LNs to ease collection and redistribution and investigating possible recycling options. They are also looking at limiting the environmental impact of net distribution by developing biodegradable bags and non-bag distribution options.

This presentation will share preliminary findings from the demonstration project and highlight other initiatives that may provide options for limiting the potential adverse impacts of this life-saving intervention.

SESSION Poster

AUTHORS RAMSAY, Carol
Extension Pesticide Education Specialist, Washington State University, Pullman, WA
[Email: ramsay@wsu.edu]

TITLE Temperature Inversions

ABSTRACT Label references to temperature inversions vary greatly and there is a need to standardize a reasonable statement that captures the concerns for the level of the inversion as well as the length of the inversion. Different label statements will be shared and discussed in an open forum.

SESSION 6A

AUTHORS RIGGS, Jennifer Lynn
Product Development Manager, Bayer CropScience.

TITLE Seed Treatment: Innovation Driven, Environmental Friendly, Committed to Plant Health

ABSTRACT Seed Treatment is often forgotten when the conversation turns to concerns with agricultural pesticides. In their own right, seed treatments should be considered environment and worker friendly. The application of a treatment to the seed has been described by some as an art and by others as a science. It is probably a little of each. Specialized equipment is used to deliver very small quantities of active ingredients to the surface of a seed, which in some instances is no larger than the point of a ballpoint pen. Advances in application technology have resulted in very little exposure to workers in seed conditioning plants. Since seed is normally planted into soil there is little chemical transported into the air. Beyond the advancement in application technology, the chemicals used as seed treatments have evolved since the days of the contact elements. Seed treatments can be applied at rates of active ingredients per seed, assuring protection to each seed planted, as well as minimizing environmental contact. While no system is fail proof, the advancement in seed treatments by several recent innovations can reduce the risk of unwanted exposure of pesticides to the environment.

SESSION 1A

AUTHORS SHIMME, Kaoru¹, Kohei Takase², Munehito Mizuno², Akemi Okawa¹
¹Radicalplanet Research Institute Co. Ltd., Nagoya-City, Japan
²Sumitomo Heavy Industries Techno-Fort Co. Ltd.
[Email: kor-shimme@radicalplanet.co.jp]

TITLE Radicalplanet® Technology (RPT): Alternative Technology for Destruction of Obsolete Pesticides

ABSTRACT RPT uses a mechano-chemical principle to destroy obsolete pesticides. The treatment occurs in a concrete vessel where steel balls and a detoxification agent, such as CaO, are placed prior to the introduction of the wastes. The vessels are then sealed and placed on the RadicalPlanet machine for rotation. As the steel balls crash into each other, the bonds of the POPs and CaO molecules are broken by mechanical energy. This process transforms these organo-compounds into their “radical” state by use of the “planetary mill” principal.

Chlorinated hydrocarbons are chemically altered into CaCl₂ and non-chlorinated organic compounds. No effluent or off-gases are generated from this treatment process. The toxic equivalent of the end product is less than 1 pg-TEQ/g and the destruction removal efficiency (DRE) is over 99.9999%. Full-scale applications of this technology have been conducted in Japan.

SESSION 5-6C

AUTHORS SPARKS, Charles (Chuck)
President, Think Plastics
New Hamburg, Ontario, Canada (1-519-662-6665)
[Email: chuck@thinkplastics.ca]
The goal of phytoextraction is to reduce the mass of contaminated solids for transport and treatment offsite. In order for this to occur, the final phytoextraction-generated plant material must have a higher contaminant concentration than the original contaminated soil. If the harvested shoot material consistently achieves contaminant concentrations greater than the original soil concentration of POPs, it has been observed to decrease significantly after 2-3 plantings and accumulations of POPs concentrations in parts of the plant shoot have been observed that are greater than or equal to that of the soil. Given these successes, it is important to now consider some of the more practical aspects of phytoextraction that need to be understood before this technology can be successfully implemented at the commercial scale.

The material helps reduce torque and drag by increasing lubricity during field applications.

**TITLE**

**Abstract**

It has now been repeatedly demonstrated that certain plants, in particular some Cucurbit species, have the ability to take up and store significant concentrations of persistent organic pollutants (POPs), such as PCBs and DDT, in their shoots. Further work has investigated the effects of soil amendments and growing conditions on POP uptake, and the mechanisms of POP uptake by plants. These studies have resulted in some significant successes in POPs phytoextraction; - soil concentration of POPs has been observed to decrease significantly after 2-3 plantings and accumulations of POPs concentrations in parts of the plant shoot have been observed that are greater than or equal to that of the soil. Given these successes, it is important to now consider some of the more practical aspects of phytoextraction that need to be understood before this technology can be successfully implemented at the commercial scale.

The goal of phytoextraction is to reduce the mass of contaminated solids for transport and treatment offsite. In order for this to occur, the final phytoextraction-generated plant material must have a higher contaminant concentration than the original contaminated soil. If the harvested shoot material consistently achieves contaminant concentrations greater than the original soil concentration of POPs, it has been observed to decrease significantly after 2-3 plantings and accumulations of POPs concentrations in parts of the plant shoot have been observed that are greater than or equal to that of the soil. Given these successes, it is important to now consider some of the more practical aspects of phytoextraction that need to be understood before this technology can be successfully implemented at the commercial scale.

The material helps reduce torque and drag by increasing lubricity during field applications.
soil contaminant concentration, disposal of contaminated vegetation directly will be more economical than disposal of the contaminated soil. Moreover, composting of phytoextraction-generated plant waste reduces the mass of the contaminated plant matter, thereby increasing the contaminant concentration and further decreasing transportation and treatment costs. We will report on the degradation of PCB congeners during composting.

Since PCB phytoextraction takes place in situ, another practical issue that must be accounted for is the effects of the phytoextraction process on the surrounding natural environment. Since the root exudates of some C. pepo plants have been shown to increase the aqueous solubility of certain POPs, it is possible that growth of these plants in POPs-contaminated soil could increase POPs bioavailability to non-target organisms. Our current studies at two field sites in Ontario are looking at the impact of phytoextraction activities on PCB bioavailability to native soil invertebrates.

Finally, a challenge of studying POPs is that the analysis of plant material is expensive and time consuming. We focussed on determining the minimum number of samples required for analysis of a whole plant and from which part of the plant these samples should be collected. Keywords: phytoextraction, polychlorinated biphenyls, field studies, Cucurbita pepo
Hyatt Regency Meeting Rooms

Lobby Level: Scarbrough Mtg Rooms
Second Floor

TPSA 2010
Receptions in Windows, Lobby Level
Meals, plenary sessions, posters and displays in Harborside East, Lower Level
Most concurrent sessions in Scarbrough Rooms, Lobby Level

Registration on lobby level, near Scarbrough
Sunday noon-4p, 6-7:30p
Monday 7-8a, 11:15a-1:15p, 6:15-7p
Tuesday 7-8:30a, 11:45a-1:15p
Posters on display throughout the conference

Many Thanks to TPSA’s 2010 Conference Sponsors!

- 2 plenaries with keynote presentations & discussion panels
- 26 breakout sessions & roundtables
- 3 receptions & other networking opportunities
- CEU credits in FL, GA, NC, SC
- member meeting
- an international gathering with participants from at least 6 countries