Environmental Toxicology of Pesticide Residues to Pollinators

Virginia Tech Activities to Further Understand Bee Health Concerns

Troy D. Anderson, Ph.D.
Insect Toxicology and Pharmacology Laboratory
Department of Entomology and Fralin Life Science Institute
Pollinator Declines: A Global Problem

- Global ecosystem services and agricultural production threatened due to insect pollinator declines.
- Bees contribute ~ 80% of insect pollination.
- Economic value of managed bee pollination is ~ $14 bill. in the United States and ~ $220 bill. worldwide.
- Causal explanation for bee population decline is unclear, despite active research efforts.

Without bees they’ll all be off the menu
Bee Colony Decline: A Virginia Problem

- Bee colony losses ca. 30% across the Commonwealth of Virginia;
- Crop pollination fees, honey sales, and colony replacement costs in Virginia ($1.3 to 1.8 mill.);
- Bee colonies for crop pollination are essential to beekeepers and growers to sustain the food and fiber needs of our society.
Bee Colony Decline: Multiple Stressors

Multiple stressor interactions associated with bee colony failure. Blue boxes represent the three main groups of stressors associated with bee loss; red arrows represent direct pressures on bees from stressors; green arrows represent interactions between stressors; and blue arrows represent interactions within stressors. (Modified from Potts et al. 2010, Trends in Ecol. and Evol. 25(6):345-353)
Pesticide Exposures and Bee Health

- Multiple agrochemicals and miticides in North American bee hives;
- Major pesticide classes:
 - PYR (99%)
 - OP (99%)
 - FUNG (60%)
 - HERB (50%)
 - CB (20%)
 - NEO (1-3%)
- Mixtures of agrochemicals present in ca. 92% of bee, wax, and pollen matrices;
- Acute toxicity DOES NOT equal ecological health risk.
Pesticide Exposures and Bee Health

- Multiple agrochemicals and miticides in North American bee hives;
- Major pesticide classes:
 - PYR (99%)
 - OP (99%)
 - FUNG (60%)
 - HERB (50%)
 - CB (20%)
 - NEO (1-3%)
- Mixtures of agrochemicals present in ca. 92% of bee, wax, and pollen matrices;
- Acute toxicity DOES NOT equal ecological health risk.
Sub-Lethal Effects of Miticide Exposures

- Miticide residues in brood comb (Wu et al. 2011):
 Development and emergence
 Adult longevity
 Hive labor and foraging behaviors
 Immunodeficiencies

- Virginia Tech Apiculture Program (Fell and Tignor 2001; Burley et al. 2008):
 Impaired reproductive physiology
 Reduced queen rearing
 Reduced sperm viability
 Increased queen failure and loss

Dr. Rick Fell and Jackson Means
Hive Antibiotic Alters Miticide Toxicity

Data by Jennifer Williams

tau-Fluvalinate + Antibiotic

24-h LC$_{25}$ = 0.50 ng/µl

- Bee mortality increased ~ 50% in *tau*-fluvalinate-treated bees
- P450 activity decreased ~ 45% in oxytetracycline-treated bees

VirginiaTech
Invent the Future
Hive Antibiotic Alters Miticide Toxicity

Bee mortality decreased ~ 80% in coumaphos oxon-treated bees

Esterase activity increased ~ 20% in oxytetracycline-treated bees

Data by Jennifer Williams

Coumaphos oxon + Antibiotic

24-h LC$_{25}$ = 0.15 ng/µl

-蜂死亡率降低约80%在苯菌硫磷氧化物处理的蜜蜂
-酯酶活性增加约20%在四环素处理的蜜蜂

24-h LC$_{25}$ = 0.15 ng/µl

Diethylphosphoric Acid

Esterase Hydrolysis

Cloroferron

Esterase Hydrolysis

Coumaphos (Organophosphate)

Coumaphos Oxon

P450 Desulfuration

Crop Fungicide Alters Miticide Toxicity

Data by Jennifer Williams

Bee mortality decreased ~ 50% in *tau*-fluvalinate-treated bees, and increased ~ 35% in coumaphos oxon-treated bees.

P450 activity reduced ~ 50% and esterase activity increased ~ 20% in chlorothalonil-treated bees.
Current Activities for Bee Health Concerns

- **Goal:** Provide a comprehensive examination of bee health in VA.

- **Question:** To what extent are bee health profiles related to pesticide exposures?

- **Specific aims:**
 - Examine the nutrition and immune status of pesticide-treated bees
 - Examine the presence and prevalence of pathogens in pesticide-treated bees
 - Examine the epidemiological patterns of pesticide exposures and bee health

- **Deliverables:** Develop bee health thresholds to improve management practices for the beekeepers, growers, and pesticide applicators.
Field Study of Pesticide-Treated Hives

- Natural hives established at Price’s Fork, Moore Farm, and Kentland Farm apiaries (Blacksburg, VA);
- Hives treated with miticide-impregnated strips (i.e., manufacturer label recommendations) or fungicide solution and maintained for six weeks.
Symbiome Structure and Bee Health

- Bees process plant nectar to honey, a carbohydrate source for the colony, and plant pollen provides individuals with amino acids, lipids, vitamins, and minerals.

- Symbiome is a distinctive microbial community that regulates the nutrition and immune status bees, and can be negatively impacted by pesticide exposures (Tian et al. 2012).

- Nutrition deficiencies, or stress, can reduce immunocompetence and increase pathogen susceptibility of individual bees resulting in colony failure.
Illumina sequencing of 16SrRNA and ITS genes for bacteria and fungi;

Bacteria: ca. 74,690 sequences and 517 OTUs at 3% evolutionary distance;

Lactobacillus is reduced ca. 50% in *tau*-flualvalinate and chlorothalonil-treated bees;

Bee health concern: *Lactobacillus* sps. are beneficial symbionts for carbohydrate metabolism, immunocompetence, and pathogen defense.

Phyla: Proteobacteria (45%), Firmicutes (36%), Actinobacteria (18%), Cyanobacteria (1%), and Bacteroidetes (0.2%)

Genera: *Lactobacillus, Bifidobacterium, Edwardsiella, Serratia*, and *Bartonella* (84%)
Illumina sequencing of 16SrRNA and ITS genes for bacteria and fungi;

Bacteria: ca. 74,690 sequences and 517 OTUs at 3% evolutionary distance;

Edwardsiella is reduced ca. 30% in coumaphos-treated bees, and *Bartonella* is increased ca. 90% in tau-fluvalinate and chlorothalonil-treated bees;

Bee health concern: *Edwardsiella* is important for carbohydrate and nitrogen metabolism, but *Bartonella* is an opportunistic pathogen.

Phyla: Proteobacteria (45%), Firmicutes (36%), Actinobacteria (18%), Cyanobacteria (1%), and Bacteroidetes (0.2%)

Genera: *Lactobacillus, Bifidobacterium, Edwardsiella, Serratia, and Bartonella* (84%)

Data by Dr. Madhavi Kakumanu and Alison Reeves
Illumina sequencing of 16SrRNA and ITS genes for bacteria and fungi;

- Fungi: ca. 19,080 sequences and 373 OTUs at 3% evolutionary distance;
- Phyla: Ascomycota (72%), Basidiomycota (21%), Glomeromycota (7%), and Unspecified (0.1%);
- Genera: *Penicillium*, *Aspergillus*, *Cladosporium*, and *Alternaria* (molds) in addition to *Saccharomycetes*, *Torulopsis*, and *Candida* (yeasts) are present, but numbers are highly variable between pesticide treatments;

- ca. 20% of fungal sequences are *Alternaria*, *Cladosporium*, and *Metschnikowia* sps. (i.e., major role in nectar to honey production);

Bee health concern: Pesticides may impact fungal community structure; however, the negative effects of coumaphos exposure may limit carbohydrate production and lead to nutritional stress at the individual and colony level.
Pesticides Reduce Bee Nutritional Status

Data by Alison Reeves

![Graph showing comparison of proteins, carbohydrates, and lipids in bees exposed to different pesticides.](image)

- **Proteins (µg/ml)**
 - Pre-Exposure Baseline: 1507.01 ± 61.92 µg/ml
 - Significant reduction in tau-fluvalinate and chlorothalonil-treated bees relative to control.

- **Carbohydrates (µg/ml)**
 - Pre-Exposure Baseline: 572.50 ± 25.74 µg/ml
 - Significant reduction in tau-fluvalinate and chlorothalonil-treated bees relative to control.

- **Lipids (µg/ml)**
 - Pre-Exposure Baseline: 449.95 ± 13.96 µg/ml
 - Significant reduction similar to proteins and carbohydrates.

Bee health concern: Pesticides may impact the bee symbiome resulting in nutritional stress and impaired bee health.
Phenoloxidase activity is increased ca. 70% in pesticide-treated bees relative to control.

Bee health concern: Pesticides may elicit nutritional stress (e.g., protein deficiency) and reduce immunocompetence leading to increased pathogen infection at the individual level (i.e., phenoloxidase stimulation).

Phenoloxidase activity is a parameter of individual immunity expressed in the hemolymph of bees. POX is a cellular and humoral response that catalyzes the encapsulation of pathogens to provide immune protection to individual bees.
Glucose oxidase activity is increased ca. 35% in pesticide-treated bees relative to control.

Bee health concern: Pesticides may elicit nutritional stress (e.g., protein deficiency) and reduce immunocompetence leading to increased pathogen infection at the colony level (i.e., glucose oxidase stimulation).
Pesticides Increase Bee Pathogen Infection

- *Nosema ceranae* is an obligate, intracellular fungal pathogen;

- *Nosema* infection is predominant in worker bees, but can affect both drones and queens (Traver and Fell 2011, 2012);

- *Nosema* infection is significantly higher in coumaphos- and chlorothalonil-treated bees.

- Bee health concern: Nutrition and immune deficiencies of pesticide-treated bees may increase pathogen susceptibility (e.g., viral, bacterial, or fungal).

Detection of *Nosema ceranae* infection in pesticide-treated bees. Pathogen levels are on the y-axis reported as the average copy number transformed using log(average copy number + 1). On the x-axis are the treatments administered. For each treatment, *N. ceranae* levels are given for pre-treatment (open circles) and six weeks post-treatment (filled circles). The average *N. ceranae* level for each time point and treatment is shown with the red asterisk.
Population Dynamics Model for Bee Health

- Predictive model to explore the impact of bee health on colony growth and development;
- Calculate critical threshold for which colonies regulate a stable population size;
- Provide a theoretical framework for experimental studies to explain bee health thresholds and colony failures.

Quantitative Model of Bee Colony Population Dynamics (Khoury et al. 2011, PLoS ONE 6(4):e18491)
Research Summary and Long-Term Goals

- Bee decline is a nationally-recognized problem, demanding attention from the general public, scientific community, and beekeeping industry.

- To what extent are bee health profiles related to pesticide exposures?

- Research collaborations for “pesticides and sustainable pollination services of wild and managed bees”: Virginia Department of Agriculture and Consumer Services, Southern Illinois University, University of Maine, and University of Exeter.

- Teaching and outreach activities: Post-doctoral and student training programs, beekeeper workshops and pollinator conferences, reference guides for beekeepers and pesticide applicators, and University events.

- Long-term goal: Provide real world, science-based solutions to address bee health concerns and translated to management practices to improve pollinator health and maintain a viable apiculture industry in Virginia, and the United States.
Real-world problems meet creative, science-based solutions...
Troy Anderson’s research group studies the effects of pesticides on honey bee hives.

Research Team: Rick Fell, Brenna Traver, Carlyle Brewster, Mike Lydy, Mark Williams, Alison Reeves, Jennifer Williams, Jackson Means, and Cameron Rose

Virginia Department of Agriculture and Consumer Services
National Science Foundation STEM and REU Fellowships
College of Agriculture and Life Sciences, Department of Entomology, and Fralin Life Science Institute at Virginia Tech